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Abstract. The method of generating functional, suggested for conventional systems by Kadanoff and Baym,
is generalized to the case of strongly correlated systems, described by the Hubbard X operators. The
method has been applied to the Hubbard model with arbitrary value U of the Coulomb on-site interaction.
For the electronic Green’s function G constructed for Fermi-like X operators, an equation using variational
derivatives with respect to the fluctuating fields has been derived and its multiplicative form has been
determined. The Green’s function is characterized by two quantities: the self energy X and the terminal
part A. For them we have derived the equation using variational derivatives, whose iterations generate the
perturbation theory near the atomic limit. Corrections for the electronic self-energy X' are calculated up
to the second order with respect to the parameter W/U (W width of the band), and a mean field type
approximation was formulated, including both charge and spin static fluctuations. This approximation is
actually equivalent to the one used in the method of Composite Operators, and it describes an insulator-
metal phase transition at half filling reasonably well. The equations for the Bose-like Green’s functions have
been derived, describing the collective modes: the magnons and doublons. The main term in this equation
represents variational derivatives of the electronic Green’s function with respect to the corresponding
fluctuating fields. The properties of the poles of the doublon Green’s functions depend on electronic filling.
The investigation of the special case n = 1 demonstrates that the doublon Green’s function has a soft
mode at the wave vector Q = (m,,...), indicating possible instability of the uniform paramagnetic phase
relatively to the two sublattices charge ordering. However this instability should compete with an instability
to antiferromagnetic ordering. The generating functional method with the X operators could be extended
to the other models of strongly correlated systems.

PACS. 71.10.-w Theories and models of many-electron systems — 71.10.Fd Lattice fermion models

(Hubbard model, etc.) — 71.27.4-a Strongly correlated electron systems; heavy fermions

1 Introduction

The Hubbard model is one of the basic models in the the-
ory of strongly correlated systems. During its forty years
of lifetime numerous approaches have been proposed for
the investigation of the possible states of the system, the
spectrum of its quasi-particles and the collective modes,
the transport properties, the different types of ordered
states and the phase transitions among them. Such long
period of development of a model which could look simple
at a first glance — since it contains only two parame-
ters, the bare bandwidth W and the on-site Coulomb re-
pulsion U — is determined by the circumstance that the
case U > W is of main physical significance. But just in
this case the theory does not contain a small parameter.
Already the first researchers tried to avoid perturbative
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theories and used different non-perturbative approaches.
Starting from the pioneering works of Hubbard [1-3], the
method of decoupling of the double-time Green’s func-
tions (GF) was treated successfully. The works based on
projecting the equations of motion for the basic opera-
tors come here [4-6]. The most productive application of
this approach has been done with the method of compos-
ite operators [7-10] used widely not only for the Hubbard
model but also for many other models [11] of strongly
correlated electronic systems. The method of the spectral
density moments uses in essence the cut short of the equa-
tions of motions for the basic operators as well [12,13].
Also the variational method of Gutzwiller belongs to the
non-perturbative approaches [14], and made it possible to
investigate qualitatively the behavior of a vast class of
strongly correlated systems during the last four decades.
The method of slave particles (slave bosons) represents an
important direction of investigation also [15-18]. The basic
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operators are expressed through a product of conventional
Fermi and Bose operators with subsequent exclusion of
unphysical states. The suitable choice of a slave particle
representation makes it possible to catch the physics of low
energy states in the scope of the mean field approximation.
Unfortunately there is no standard recipe for constructing
such representations, and it is not always clear which one
among the possible representations is the most adequate.

During the last decade the method of the dynami-
cal mean field theory (DMFT) has become quite popu-
lar [19,20]. By means of this method it has been possible
to investigate the behavior of almost all the models in
the theory of strongly correlated systems in the region of
strong and intermediate interactions. Apparently DMFT
is the most efficient method of investigation of these sys-
tems, although not exempt from some defects: it demands
a huge amount of computations and has problems with the
description of collective modes (see the review [21]). We
do not mention here the numerical methods like Quantum
Monte Carlo and small cluster diagonalization, because we
concentrate our efforts on the analytical approaches.

We want to pay attention to one of the analytical ap-
proaches where there is a possibility to derive a consistent
perturbative theory with respect to the parameter W/U.
Definitely, such an approach corresponds to the perturba-
tive theory near the atomic limit. The approach is based
on the introduction of a generating functional Z[V], de-
scribing the interaction of the system with fluctuating
fields depending on space and time. This functional cor-
responds to the generalization of the partition function of
the system for the case of interactions with external fluc-
tuating fields. For a proper choice of the V operator the
different GF's of the system are expressed through varia-
tional derivatives with respect to fluctuating fields.

At the beginning this method was developed for a weak
interaction by Kadanoff and Baym [22,23] forty years ago.
It could be generalized to a strongly correlated system
when we express the Hamiltonian through some basic op-
erators taking into account the correlations (for instance
the Hubbard X operators) [3] instead of the conventional
ones. The first time such an approach has been applied to
the Hubbard model was in the limit U — oo (with an ad-
ditional small parameter 1/N, where N is the degeneracy
of the electronic states) [24]. Afterwards this approach has
been developed farther in the works [25-27,32].

Recently we have provided a general framework for
the generating functional approach (GFA) and we have
applied it to a set of basic models of spin and strongly
correlated electronic systems: Heisenberg model, Hubbard
model for U — oo, tJ-model, sd-model, double exchange
model [27,32]. The results of these investigations have
been generalized in the monograph [33], published in Rus-
sian, and in the course of lectures delivered in an interna-
tional school [34].

In this paper we apply the GFA to the Hubbard model
with a finite Coulomb interaction U. Supposing that U is
large but of the order of W we express the Hamiltonian of
the model in terms of the X operators and calculate the

electronic and bosonic GFs. The latter describes the two
types of collective modes: magnons and doublons.

The electronic GF is a matrix with respect to the spin
index o, the index «, indicating the Hubbard subbands,
and the index v corresponding to the particle-hole repre-
sentation. We have derived the equation in the variational
derivatives with respect to fluctuating fields for it. Be-
cause the basic operators do not commute on c-values, the
electronic Green’s function is characterized by two func-
tions of four-momenta: the self-energy X' and the terminal
part A. For X and A the equations with the variational
derivatives have been derived too, whereas it is possible
to make iterations with respect to the parameter W/U.
Just these iterative series represent the perturbative the-
ory near the atomic limit [35]. We have limited ourselves
to the first and second order corrections for X and ex-
tracted from them a mean field type Xy part, which
includes contributions depending only on the wave vec-
tor k, but not on the frequency. Xy;r consists of a term
giving a shift to the Hubbard subbands and renormaliz-
ing its width. The last term was extracted from the second
order correction X%, which is an “uncutable” term (with
respect to the hopping matrix element), while a “cutable”
term Y5 describes the dynamical interaction with boson-
type excitations. A procedure of extraction of the static
part from X/ was borrowed from the Composite Operator
Method (COM) [7-10]. The main idea of this approach is
that bosonic correlators, describing for example static fluc-
tuations of charge, spin and pair, should not be calculated
by some uncontrollable approximation (like decoupling or
use of the equation of motion), but must be determined
by means of general properties of the electronic GF [10].

The GFA, restricted to the mean field approximation,
and the COM, restricted to a two-pole approximation,
have a different structure for the electronic GF. In spite
of this, the results obtained by these two methods for dif-
ferent properties of the Hubbard model turned out to be
in very good agreement. In particular, such mean field
GFs give two quasiparticle subbands with a gap between
them, which vanishes for half-filling at some critical value
U = U,, and an insulator-metal phase transition occurs.
Detailed comparison of the mean field approximation in
GFA and COM will be discussed below.

Using the electron GFs we found, we can calculate
Bose-like GF's for plasmons, magnons and doublons. In
this paper we study only doublons — collective modes, de-
scribing motion of double occupied states of the lattice
sites. The equation for the doublon GF has been derived.
This equation contains variational derivatives of the elec-
tronic GF with respect to the corresponding fluctuating
fields, coupled with charge densities. In the mean field ap-
proximation for the electronic Y we have obtained the
closed equation for the doublon GF. For the paramag-
netic state at half filling (n = 1) the doublon GF has a
soft mode at momentum Q = w = (m,7,...). It indi-
cates a possible instability of the uniform state against a
charge density wave formation. When the filling deviates
from unity (n < 1), the pole of the doublon GF has a gap
U — 2u, thus having the activative character.
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The content of the paper is the following. In Section 2,
based on the X operators formalism, the GFA is con-
structed. In Section 3 it is derived the equation of motion
for the electronic GF in the form of equation with vari-
ational derivatives. This equation is decoupled into two:
one for the self energy and one for the terminal part. In
part 4 the iterations of these equations with respect to
the parameter W/U are implemented and the GF in the
“Hartree-Fock approximation” is calculated. In Section 5
we formulate a mean field approximation and compare
GFA and COM approaches. A Bose-like GF for doublons is
calculated in Section 6 with the electronic GF taken in the
mean field approximation. In Section 7 we calculate the
doublon susceptibility in the hydrodynamical regime. Fi-
nally in Section 8 we discuss the obtained results and pro-
pose suggestions for further study of the Hubbard model.

2 Introduction of the generating functional

Let us consider the conventional Hubbard model for non-
degenerate states. In terms of the Fermi operators the
model Hamiltonian is

H= ticlcio + Uy nipnay,
7

ijo

(2.1)

where cw(cja) is the operator of annihilation (creation)
of an electron on the site ¢ with spin o, n;, = ¢, cis
is the electron number on the same site with the given
spin. Under the condition of a strong on-site Coulomb re-
pulsion U > zt (where ¢ is the hopping matrix element
for the nearest neighbors and z is the coordination num-
ber) it is useful to express the Hamiltonian (2.1) in terms
of the X operators. The operator XP? for the site i de-
scribes the transitions between the four possible states
p=10),|0),|7),|2) — without any electron, with one elec-
tron possessing the spin projection ¢ or —o and a pair of
electrons, respectively.

The X operators could be represented through the con-
ventional Fermi operators by means of the relations

quo = C}Lg(l - ni5)7
Xg6 = C:iro’ci57 X’L20 = O-cja'c;'ro'7
Xigg = nia(]- - ni(r)a

X,L-OO = (1 — ’nig)(l — nia).

Xf" = ac%nw,
(2.2)

22
Xi = NijcNiz,

The operators X7° and X?° describe the correlated cre-
ation of an electron and are Fermi-like f-operators; X7°
and X?2° describe the flip of a spin on a site and the cre-
ation of a pair; they are Bose-like b-operators, respectively.
The remaining X’s are called diagonal. We note that there
are the hermitian-conjugate operators (X¥)" = X, The
sixteen X operators comprise thus the whole set, form-
ing the algebra with the corresponding property of the
product

XT9XP1 =64, X[ 1. (2.3)

and the permutation relations of the anticommuting type
for the f-operators while commutating for the b-operators.

We note that the conventional Fermi operators are ex-
pressed through the linear combinations of the X opera-
tors of the f-type
e =X —0X2, o =X —0XT2 (24)
These relations express the motion of the correlated elec-
trons in the two Hubbard subbands.
It is convenient to introduce the two-component

spinors for the the f-operators:

¥(io) = (;gé;) . Wiio) = (X7°,6X77). (25)

Then the Hamiltonian (2.1) is represented as H = Ho +
‘H1, where

Ho=). (Z e X7 EQX?) L0
Hy = ZZ Z g;ll(ig)talaz (ij)Was (jO). (2.7)
17 o ajag
Here we added to Hamiltonian (2.1) the term

h
Z(—u—a§)nw, where p is the chemical potential

afgd h is the external magnetic field, that is why new
notation appears: €, = fa% —p, €2 =U —2u. In the
quadratic form (2.7) ¥,(io) represents the component
of the spinor ¥(io), (& = 1,2); in addition we have
introduced the matrix
11
S= (1 1) .

Note that the index a numerates the Hubbard subbands.
With the help of the rule of multiplication (2.3) for X op-
erators, one can write the permutation relations of the
spinor f-operators:

tap(ij) = ti;Sap, (2.8)

[W(io) @ W1 (jo)], =6 Ff
[W(io) @ ¥ (jo)], =0, X7°7T° ¢,
[W(io) @ W (jo)), = ijoX{?(iTY)

(2.9)

where 7%, 7Y, 7% are the Pauli matrices, and F7 is a 2 X
2 matrix, composed of X operators:

00 oo
F,,:(Xi + X 0 )

i 0 X_(r(r + X22 (2'10)

The permutation relations between f- and b-operators
have a commutator character:

[W(idl), X;262] = (5ij(50102g/(i0'1)}

[W(io’l),X?O]7 = 51-]-51WT(1'51)T””

(2.11)

In other cases of permutations, relations of type (2.9)
and (2.11) give zero.
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Thus, an anticommutator of two W-operators is ex-
pressed either through a diagonal or a b-operator, but
the commutator of ¥- and b-operators is naturally a
¥-operator. Note the two relations

(xr)h = x, (2.12)

XPO 4 X074+ X7+ X2 =1, (213)

which complete the algebra of the X operators.
Let us write the equation of motion for the f-operator.

For the thermodynamical time 7 (-8 <7< 8, 8=
1/kT) we start from the Heisenberg equation

¥(10) = —[¥(10), H],
which could be written in the case of the

Hamiltonian (2.6)—(2.7) in the following form

V(101) = —ES'W(107) — F{ (110 @ (1'0y)

_ Xifwl,rz{(u,)w(lla—l) + 51@T(1/J—1)f(111)i7'yX?2.
(2.14)

Here a double-row matrix with respect to the spinor index

was introduced
o_ (€ O
BY = (0 €, + U) :

Here and in the following the numerical indexes indi-
cate the four-dimensional coordinates including the site
and the time 7, i.e. 1 = (i1,71),...; a summation over the
primed indexes is understood (it is a summation over the
sites ¢ and an integration over the time 7). And finally the
value

(2.15)

t(11) = 0(m — m)tii, S = (1), (2.16)
has been introduced, representing the matrix over the
spinor indexes (the last circumstance has been specified
by the symbol 7).

Thus the operator ¥ represents the linear combination
of the f-operators, with the bosonic b-operators as the
coefficients, and the matrixes E and ¢ too.

Following the method we have applied many times
to different quantum models [27,32,33], we introduce the
generating functional

ZV]=Tr (e*ﬁHTe*V) =e?, (2.17)
where T is the symbol of the chronological product and
the trace is taken over the whole set of variables of the
system.

For the Hamiltonian (2.6)—(2.7) it is convenient to
choose the operator V' in the form

r ! r !
V=00 X0 B X 4077 X0
= =/ !
+ 07,7 X7 R XE o X2 (2.18)

It represents the linear combination of the whole diag-
onal and b-operators with the single point fields v. Thus,

differentiating the equation Z[V] with respect to the dif-
ferent v’s, we can express the different GFs through the
variational derivatives with respect to the corresponding
fields. For instance, for the single particle Bose-like GF's
of the plasmons, magnons and the doublons we have the
expressions:

1 §2Z[V]
0102 — (T X191 X 0202 — _
N (12) < 1 2 >V Z[V] 50?101 5,0127202 )
(2.19)
oo 00 Yoo 62@

D (12) = *<TX1 X2 >V = T o5s o0’ (220)

ovy 7 dvg
D2 (12) = —(TX2X2%, = 7527@. (2.21)

L Sv92603°

Here and further symbol (...)y = (...e”"), where
(...) means averaging over Gibbs ensemble with Hamil-
tonian H.

Having been introduced in such a way, the GFs are
functionals of the fluctuating fields. Directing these fields
to zero after taking the variational derivatives, we shall ob-
tain the actual GFs, describing our system. The fermionic
GF cannot be obtained by differentiation of Z[V](®) with
respect to the single-point fields and it is necessary to de-
termine the equation of motion for them.

3 Equations of motion for electron Green’s
function

We make use of the general equation of motion (see

Appendix) and write it for the expression ((T%%])), de-
termining the electronic GF:

(10, (100) ], (202)e V) =

87‘1
({0, (101) 0L, c2) ™)
+ (T, (107, (202) ™)

— (T{Wa, (101), V}_W] (200)e”")). (3.1)

Let us calculate now the anticommutator and the com-
mutator of the W-operators in (3.1). According to rela-
tions (2.9) and (2.11), we have:

{Tay (101), 0], (202)} =
612 (Doros (F )y + 010070 X770 ) + (3:2)

[P(0), V) =
W (101) + 077 W (161) 4 6100201 (167)7%. (3.3)

Here W is the double-row matrix composed with the fluc-
tuating fields:

o ,UO'O'_,UOO 0
W1<1 0 ! 22 g | -

vt — oy’

(3.4)
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After the substitution of expression (2.14) and the com-
mutators in equation (3.1), the latter could be represented
in the form:

Goy (101,101 (T (vo1) ¥ (200)e ")) =
— 612 [0oron (TE e V) + 0,0, T (TX] eV
+ 5100277 (T (161) 1 (200)e "))
+ ((TFl‘”t(n/)W(l/al)Q/T(202)6_‘/))
+ (1) (T X7 W (161 (202)e V)
+ o (TX2UT (1601 (209)e ™V )E(11)iTY.  (3.5)
Here the quantity

Ga‘}(lal,wg) =

6 o1 o1 0101
{ (_8_7'1 — E ) 50102 - W1 50102 Uy 050102 } 012,
(3.6)

has been introduced, which defines the zeroth-order ap-
proximation propagator of the electrons in the fluctuat-
ing single-point fields. This quantity is the 2 x 2 matrix
with respect to spinor indexes. Expressing the mixed GFs
through the variational derivatives of Z[V], we can repre-
sent the obtained equation as

Gov (101,107 (T (voy)¥T (202)e ") =

—01201 (0109) Z[V]+ar (0107)E(10) (T (1'07) ¥ (202)e "))
-0 [012 o1y — a1 t(11) :1 } ((TQ?T( )WT(QJQ) V))

(3.7)

Here the double-row matrix is the differential operator
with respect to the single point fluctuating fields:

~ 0
&1(0’1,0’2) = (50102F101 - 501027—ZW> 5 (38)
1

where
4] )
+ oo 0
. 5000 T 3u°
Fo = U1 . ! 5.8 (3.9)
w77 vy

Also, let us note that t: is the transposed matrix of .
As usual, we pass from the functional Z[V] to the func-
tional @[V] using the substitution:

Z[V] = e?VI, (3.10)

Then, the equation (3.5) results in a direct equation
for the electronic GF:

(a1 (0107)@)i(117)
— a1 (o1t (TP (10} )T (205)eV) =
— 512[&1 (0‘10’2)@] — 0‘1511/1]?2 <TWT(1’5'1)T;CQ/T (20’2)6_V>
— (5?052 + 55?2) (Tw(v67)E(11)iT" W (209)e V).
(3.11)

[Ga‘}(la, Voy) —

We see that the equation for the GF (TW@¥Te~V) con-
tains the anomalous GF (T¥Wfe=V). Then, it is neces-
sary to write the equation for it, too.

Let us introduce the matrix GF:

L(12) =
< (TW (107" (205)e=")
(

<TW(101)W(202)6V>>
Tw! (101)0 (209)e=V) '

(TW (101)¥(203)e™ )
(3.12)

The underlined numerical index 1 in the left part rep-
resents the cumulative index, containing the space-time
point 1, the spin o1, the spinor index «; and one more
index v1, accepting two values, specifying the matrix ele-

ments (3.12), so that

1= {101a1V1}. (313)

The matrix £(12) is an 8 x 8 matrix with respect to the
collection of the discrete indexes. A matrix of such a rank
appears automatically in the Hubbard model. Its arising
is described “normal” states (without the Cooper’s pairs)
but also with broken symmetries as well.

The set of four equations for the GFs in (3.12) could
be written as a single matrix equation:

Loy (

=
|—
\_:
—~
N
S
~
N~—
—
|~
=
—
|
—
S
F-<
N~—
—
|~
=
\_:
| S
[y
—
—
%)
~—
I

Here we introduced the operator matrix

i P S

R a1(o102) 0106,040T 5,07
A(12) =012 1

S .
—0105,0,17Y 500 a1 (0201)
1

(3.15)
where each element represents the 2 x 2 matrix with re-
spect to the spinor indexes, hidden in the Pauli matrices
and the matrix a;, having the variational derivatives with
respect to the fluctuating fields as its elements. Besides,
the equation (3.14) contains the matrix

t(12) 0
Y(12)= 2 . 3.16
(2) ( 0 —t(12)> (3.16)
The value La‘} represents the double-row matrix
Go_{}*(wlﬂ@) 0105,05 0127702
-1
Lyy(12) = o At ,
_0-1607102 (5127’1’1]1 Gov(lo'l, 20'2)
(3.17)

where Go_{}' is given by the expression (3.6), and éo_{}' by
its transposition:

~ 0
Gg‘}(ml,wg) = { < 871 + E01> Oy o9

o o101,.0
+W1150102 —l—’Ull tr 50102}(512.
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If replace back in equation (3.14) term with by the
mixture GFs one can see that the matrix equation (3.14)
is equivalent that derived by Plakida [28,29]. The equa-
tion (3.14) is of the same type of the equation for the sin-
gle particle GF, that we derived for the Hubbard model
in the limit U = oo [27] and for the Heisenberg model as

well. In the above models the matrix A degenerated into a
scalar, but now it is a matrix with respect to the discrete
indexes a and v, likewise the other values in (3.15). By
virtue of the noted similarity of the equation (3.14) with
the respective equations of the models considered before
we could expect the same structure in the solutions of
these equations, in particular the multiplicative character
of the electronic GF's. Let us represent them as a product
of the propagator L and the terminal IT parts, respec-
tively, namely:

L(12) = L(1)I(12). (3.18)
The propagator part satisfies the Dyson equation
L7 (12) = Loy (12) — X(12). (3.19)

Let us represent the equation for the self-energy part like
the sum of the two terms:

P(12) = ' (12) + (ITY)(12), (3.20)

which took place for the models considered before. Then,
inserting (3.19) and (3.20) in (3.18) and comparing with
the initial equation (3.14), we can obtain the two equa-
tions for IT and X':

M(12) = (AP)(12) + (YID)(a'3)Aa) T (372),  (3.21)
X'(12) = ~(YL)(a'3)AQs") (Loy(a'2) — Z'(372))
(3.22)
In obtaining these equations we have taken into account
the identity

(AL)(12) = ~L(12) [AG1) L7 (28] L(32), (3.23)

which is the generalization of the well known identity ex-
pressing the differentiation of a GF through the differen-
tiation of its inverse:

oG Gt
v ov
The equations (3.21) and (3.22) for the terminal and
self-energy parts of the GF have a structure analogous
to the respective equations of the other models. These
are the equations for the variational derivatives for IT
and Y’. The contribution X’ in the self-energy part X
is not cutable through the “line of the interaction”, repre-
senting the value Y. The cutable part X' has been already
extracted in the equation (3.20) like the second contribu-
tion.
From the set of the equations (3.18)—(3.20) it follows
an important consequence, which could be represented in
the form of the following equation for the GF L:

L=L'+L'YL.

G.

(3.24)

Here £’ is determined by the two relations:

=01 L *'=Ly-%.

The solution of the equation (3.24) could be written as:

Laz)= [~ —Y] " (2), (3.25)

where

£/t =m0" (Lyy—X). (3.26)
As it follows from the definition, the value £’ is not cutable
through the line Y, therefore the equation (3.24) for the
GF is the Larkin’s equation, expressing a GF through
an irreducible part (with respect to a line of “interac-
tion”). From this equation it follows the locator repre-
sentation (3.25) for the electronic GF, also.

So, this issue is a diagrammatic justification of the
multiplicative representation (3.18) for one-particle elec-
tron GF. Similar representations for one-particle GFs in
other models of strongly correlated electron and spin sys-
tems was discussed in details in a review [34].

The equations (3.21) and (3.22) could be solved by
iterations. At the first orders with respect to Y we obtain:

(3.28)

In (3.27) the operator A, acting on @, brings the mean
value of the diagonal and b-operators; a repeated action of
the operator A will produce bosonic GF's of the different
types. An action of the operator on L;* will result in ex-
pressions composed of different §-symbols. The problem
is contained in the multiplication of the matrices in the
equations (3.27) and (3.28), taking into account that the
matrix A(; 2) contains derivatives, which should act on
the corresponding values. To fulfil the matrix multiplica-
tion accounting for the operator character of the several
factors, we rewrite the expressions (3.27) and (3.28) in
another form:

M(z) = A(12)d+A@1a)(YL)(4'3")A(3'2)P+..., (3.29)

(3.30)

In these expressions all the factors are arranged in the or-
der of the matrix multiplication, but we should not forget

which factors the derivatives of the matrix A act on.
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4 Iteration equation for the self-energy
and terminal part

According to definition (3.12), the electronic GF L takes
into account the possibility of states with coupled elec-
trons. In this paper we shall consider the normal system,
described completely by the matrix element of the elec-
tronic GF £(12), namely

G101 209 ) = LM (107 203). (4.1)

The normal GF G can be looked in the standard mul-
tiplicative form

G =GA. (4.2)
with G obeying the Dyson equation
G ' =Gy — X, (4.3)

and the self-energy part being a sum of two terms, un-
cutable X’ and cutable At:

X =5+ At (4.4)
In equations (4.2) — (4.4) all quantities are 2 x 2 matrices
with respect to spinor indexes, with arguments of the type
g(101 209 )

Iterations in general equations (3.21) and (3.22) al-
low to get series for X’ and A, determined by equa-
tions (4.2)—(4.4). Calculations of these series are done in
Appendix B, and here we present the results within the
limit of the first two orders. We have, for the zeroth order

of A:
0= (70 )

(n%) = (e} cio) (4.6)

is the average number of electrons on a site with spin o.
The first order correction for A is the following

(4.5)

where

(X7° + X7 =

) M (k) Ag (k)
7 (k) = , 1.
v (Af(k) Ag(k)) o
where

—— el )| (G5, + GRIE+ N (o)
+(G, +G5)(k+q)D? (q) + (G5, + G3,) (—k—q)D**(q) |,

(4.8)

=Y elk+aq) { (G, + G%)(k + )N (q)

+(G+G3,) (k+9)D7 (9) +(GT, +GT2) (—k—9)D*(q) |-
(4.9)

The quantities N9 (k), D% (k) and D?(k) are the Fourier
transforms of the bosonic GFs, determined by rela-
tions (2.19)—(2.21) with 4-momentum ¢. Here (k) is the
Fourier transform of ¢;,,,, which is actually the bare elec-
tron energy in the lattice.

The contribution of the first order in X’ is given by:

- of 1 —1
X = (1 1 )7 (4.10)
where ) )
n’ = ZE(":) [G(ﬁ(k’) - gz(k?)] . (4.11)
k
The second order correction is equal to:
o T(k)  ¥5(k) )
s — ( #iL 2 412
2 <—90‘1’(k) “e5(k)) (4.12)
where
PI(k) =" e(k+q)e(kr + q)
qa ki
< Gatin)g? -+ 6T+
+ GY1(k1)g% (k + ¢)GT, (k1 + q)
+ ZG22 —k1)g” (k+ q)GTy(=k1 —q)|,  (4.13)

and the quantity g (k) is given by a change of spinor
indexes 1 < 2 in (4.13). Here g7 (k) is a linear combination
of the matrix elements of the electronic GF:

T2 (k) — G35 (k)

Finally we write down the second order contribution
in the cutable part of X' that is, the express1on for X7, =
A7 . Because in momentum representation 7 is equal to
e(k)S, with & being the 2 x 2 matrix determined in (2.8),
we find, according to (4.8):

9° (k) = GT1 (k) + G5, (k) — (4.14)

= wew (1) )
where
A (R) = A () + A () = — Sl + q)
x [g"(k + N7 (q)
<4+ D7 (@) + 57 0+ D),
(4.16)
37 () = Gy (— )+ Ga(— k)~ G, ()~ Goa(—K), (4.17)
and

97 (k) = =97 (k).
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We see that the correction X{” depends neither on momen-
tum nor on frequency and determines only a shift of elec-
tron spectrum, but it depends on spin. The second order
corrections X7 (k) and X7 ,(k) depend both on momen-
tum and frequency. The contribution X7, is determined
by the interaction of electrons with bosonic excitations,

while X7 is determined by electronic GFs only.

5 Mean field approximation

The simplest approximation of a mean field type is the
Hubbard-I, which takes into account a term in X' equal to
Apt. To it, one can add a first order term X1, not depend-
ing on frequency. The second order correction X% depends
on the frequency, however we shall try to extract from it
a static part by the following ansatz.

Let us consider that in X} both expressions for ¢ (k),
©3 (k) include a factor e(k4q) in the summation over g. So
it can be factorized in the nearest neighbor approximation,
and a term proportional to e(k) can be taken out from the
static part of XY for the cubic lattice. Thus in the static
approximation X can be approximated by the expression

20 = (M %) <tw (5.1)
—P1 P2

Here py and p§ are some spin dependent constants.
Their expressions can be explicitly written out, but we
will not do it, because we shall try to calculate them
from some general conditions for electronic GFs, which
should be satisfied. Such conditions were formulated in
works by Mancini and coworkers (see general discussion
in paper [10] and refs. therein), where it is developed a
method using linearized equation of motion for compos-
ite operators. The condition is demanding that the elec-
tronic GF G5 is equal to zero when arguments coincide.
Below we will use this idea for the determination of un-
known parameters p{ and pg.

First we write down the self-energy part in an approxi-
mation which includes the Hubbard-I term, the first order
correction X’ (4.10) and X% in the form (5.1). All these
three contributions give X/, corresponding to a mean
field approximation. So we have:

ot = (1 7))
(1 —(n%) +p7 1—(n%) +p§>
+ _ e(k). (5.2)
(n?) —p{

(n?) —ps

It is clear that the first term is responsible for a shift of
the Hubbard subbands, and the second one for a renor-
malization of their widths. The propagator part of the GF
in the mean field approximation is determined by a matrix
equation:

[G7 (k)" = [GF (k)] — Sy (k).

We look for a solution of the form

(AVap(k) | (AT)ap(k)
iwn, — E7(k)  iw, — EJ(k)

Gop(k) = (5.3)

The poles E? (k) and their residues (A% )qg(k) are written
in the form:

(A7) (k) = % {1 + 27;5?’33)]
Azt = 2 13 8]
n” 4+ (1 —(n%) +p9e(k) [’ o
(A7,)12(k) = F 2Q7 (k) 2
(A7,)21(k) = anU - (?5?’(’@??)5(’6)
E7, (k) = RO (k) % Q7 () 55

Here
r7(k) = U — [1—2(n?%) +p{ + p3le(k),

whilst expressions for R?(k) and Q7 (k) will be written
later.

The electronic GF G? in the mean field approximation
is found with the help of the general relation (4.2)

g7 (k) = G7 (k) A (k),

where A§ (k) is given by the matrix (4.5).

The electronic GF depends on parameters p, 77, (n),
p{ and pg, which must be determined in a self consistent
way from the equations

gy =mni, ()= G0, 7,7 +0),
o af

and also from equation (4.11), determining the parame-
ter n7. Parameters pJ and pg will be determined [10] from
conditions which follow from the properties of X opera-
tors, namely:

Go(i, 75 4,7 +0) = (GXZ7X)7) =0 (5.6)
G, (i, 73 i,7 +0) = (X7°X7%) = 0f '

Thus a complete system of equations for all five parame-
ters can be written in the form:

(n%) + (n%) = mn, (5.7)

(n”) = zk: [GT1 (k) + G5 ()], (5.8)
7 = Zk:s(k) [GT1 (k) — G35 (k)] | (5.9)
zk:%(k) =0, (5.10)

> G5 (k) =0 (5.11)
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Fig. 1. Dependence of parameters p1 and ps on (a) electron concentration n and (b) Coulomb interaction U.

(we assume homogeneous states, so all averages do not
depend on site index).

From the comparison of the last two equations we find
a relation between parameters p{ and pg:

P +p5 = —(1-2(n%).

Therefore, the parameter p§ can be replaced in all the ex-
pressions above. Thus the equations (5.4) for the residues
of GF are:

(5.12)

(A7) (k) = % [1 = 2Qg(k)}
(A7,)22(k) = % [1 + 2Q3<k)}

n” + ((n%) — pT)e(k)
2Q7 (k)

(Aga)l?(k) = (Ai2)21 (k?) =F

(5.13)
Expressions for R?(k) and Q°(k), determining poles, are
now equal to:

RO(K) = o — 7 + (L9 — (n"))ek) + & —
Q7(k) = 5\/U2 + 41 + ((n) — p)e(k)]
(5.14)

After the replacement of parameter pg, the two equa-
tions (5.10) and (5.11) reduce to only one, which allows
to find the unknown parameter p{. Taking the summation
over frequencies in all equations (5.8)—(5.11), we write our
system in the form:

(%) = 50— K§) ~ S (1 —2n%),  (5.15)
0 = —UF?, 5.16)
WE A (%) —p)F =0, (517

where we use the definitions of the paper [8]:

/cgzﬁzk}"(’“) {th(Eg(Tk)) +th (E;(Tk))}
(5.18)

w (o) ()]

(5.19)
We have to add to them equations (5.15)—(5.17) and equa-
tion (5.7) for chemical potential.
The energy of the system can be found by averaging
the Hamiltonian (2.6)—(2.7) over a Gibbs ensemble. It is
quite easy to express it by means of electronic GF's:

o _ 1 e™(
Fn = 2Nzk:2Q"

%Oﬂ =Y ek) Y Glsk) + U(X*) (5.20)
ko af
where :
(X?y=D = 5 2952- (5.21)
ko

After substituting here the expressions for the matrix ele-
ments G 5, we find the expressions for the energy (H) and
the double occupation parameter D:

1

Ly v
1 .U ]
# 3 [tny = 5KT - ST a4 (%) -7 |,
’ (5.22)
(X®2)y=D = iz<nf’>(1 - K§ + UFS). (5.23)

In Figure 1 the parameters p; and ps are plotted as
functions of electron concentration at different U. Such
results are typical for other fixed parameters of the sys-
tem. For all different n and U the parameter p; is positive
and po is negative. A negative solution for parameter p;
was not found. The behavior of p; is rather similar to the
COML1 solution for the parameter p in works [8,9] (COM1
is a name authors [8,9] gave for the solution with p > 0).
In Figure 2 the concentration dependence of chemical po-
tential is given for two values of U. In the same figure
a COM1 solution, that we found from equations of pa-
per [8], is presented for two variants of density of states
for the bare electron band: a two-dimensional square lat-
tice with nearest-neighbor hopping and a model density
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Fig. 3. Parameter 7 as function of n and U.
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Fig. 4. Parameter D = (n°n”) of double occupation depending on n and U.

of states of this type:

1, |e| <W/2

. 5.24
0, le|>W/2 (5:24)

ple) =

We see that COM and our GFA give similar results. The
COM.1 solution for the 2D-system and for the model den-
sity of states are quantitatively very close, and because of
this we shall use hereafter for simplicity the model density
of states (5.24).

Slightly worse is the comparison of results for 7
(Fig. 3), however there is a qualitative coincidence of
COM1 and GFA calculations. The parameter of double
occupation D gives again a satisfactory coincidence of the
two approaches (Fig. 4). It is useful to show the depen-
dence of 7 on n in a whole electron concentration interval
at different values of U (Fig. 5). When decreasing U a
part of the curve denoted by dash lines approaches to the

0,15+

0,101

0,051

-0,054

-0,104

-0,15

0,0

Fig. 5. Dependence of parameter n on n at different values

of U.
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Fig. 6. Evolution of the quasiparticle density of states at half filling depending on U for a model density of states (5.24) in the

bare band.

abscess line, and when U — 0 one can see that n — 0, as
it should be in the case of noninteracting electrons.

Calculations show that when U decreases, the value
of the jump of the chemical potential at n = 1 decreases
too, and at the same critical value U, =~ 1.73 W becomes
equal to zero. This corresponds to the closing up the two
Hubbard subbands, and the insulator-metal phase tran-
sition occurs. The evolution of the density of states of
the quasiparticle spectrum when U changes is shown for
two different bare density of states: the model one (5.24),
Figure 6, and the semielliptic one

4 2¢\?
1= (FF) o w2 (s
0 el > w2

pe) =

Figure 7. In COM1 the critical value is U, ~ 1.68W [8],
which is close to our value U, = 1.73 W, obtained for the
density of states (5.24).

At half-filling it is easy to get an expression for the gap
between the two Hubbard subbands with energies E, (k)
and F,(k):

2
AE =— (%erl) W+\/U2+ <%p1> w2, (5.26)

From here follows the critical value U., when AE = 0. It

is equal to
U.=+/2p1 W, (5.27)

so that when U > U, the system is an insulator, and when
U < U, a metal.

Compare now the two approaches for the Hubbard
model: GFA and COM. The mean field approximations
in the framework of these approaches are close to each
other both as what regards the GFs structure and physi-
cal properties of the model calculated with their help. In
both cases the electronic GF has a two-poles structure.
The COM approach includes only the parameter p, which

1,24

1,04

o mwomwn
N=aaao
N N oo

ccccc
oo,

0,8
0,6- R
0,4

0,24

0,0

Fig. 7. The same as in Figure 6 but for a semielliptic density
of states (5.25).

has to be found from the equation Gio = 0. In the GFA
two parameters, (p; and ps), appear, determined through
two equations: Gio = 0 and Ga; = 0. Due to this pair of
equations one of these parameters can be eliminated, and
as a result we have only one parameter, p;.

The physical meanings of the parameters p and p; are
close. In the COM approach the parameter p describes
the static fluctuation of charge, spin and pair. In GFA
the parameter p; includes traces of static charge and spin
fluctuations as well. Corrections for the self-energy due
to dynamical interaction of electrons with bosons in both
approaches practically coincide and correspond to SCBA.

The equations for the determination of parameters p,
(n%), n, p1 in GFA and p, (n?), A, p in COM are rather
similar, but have different solutions. In COM at fixed ex-
ternal parameters (n, U, W) one has two solutions: with
p > 0 and p < 0, while in GFA there is only one solution
with p; > 0 (the second parameter py is always negative,
but it does not enter in the electronic GF explicitly; but
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it only guarantees the satisfaction of the two conditions
G12 = 0 and Go; = 0, simultaneously). A remarkable con-
clusion follows from numerical calculations with different
sets of external parameters. In spite of some difference in
GFA and COM, the calculated quantities of the model
are rather close to each other, if in COM only COM1 so-
lutions with p > 0 are taken into account. The two-poles
GF of this approximation can be used farther for the cal-
culation of corrections to the self-energy X' (k,w) from the
dynamical fluctuations [30] and for bosonic GFs (magnon,
plasmon, doublon), describing these fluctuations [31].

6 Boson Green’s functions

The complete system of 16 X operators contains two Bose-
like operators X% and X{? (and their conjugates X7
and X7°), which determine the two Bose-like GFs (2.15)
and (2.16).

They describe propagation of a spin flip (magnon) and
a dyad (doublon), representing the two types of the Bose-
like collective modes. These GFs could be represented as
the variational derivatives of Z[V'] with respect to the fluc-
tuating fields:

. 52
D (12) = *W, (61)
1 Y2
5%
DY(12) = T (6.2)

To write the equations of motion for the GFs D7?
and D% we need the equations of motion for the Bose-
like operators:

X77 = ~(e = £0) X77 = ¥}, (10)Sarprt(11)¥ (1'0)
+ Wl/(1’0‘)t(1/1)%a/ﬁ/Wﬁ/(15‘), (63)
XP? = —(U=2p) X{? 40" (170) o (15") St (1) (1'0).

(6.4)
We see that in the right hand sides of these relations ¥-
operators occur; therefore in the corresponding equations
of motions for the magnon and the doublon GFs the T-
mixed product of f- and b-operators will appear. They
could be represented as the the variational derivative of
the electronic GF with respect to the fluctuating field v
in the first case and v°? in the second. One of the im-
portant feature of the doublon GF is that it includes the
“anomalous” electronic GF, composed of the two opera-
tors ¥(10) and ¥(25), while the equation for the magnon
GF should include the normal electronic GF, composed of
the operators ¥(10) and ¥ (25). By itself these anomalous
GFs are equal to zero when the fields are absent, however
their derivatives with respect to the fields v?? and v°2
are not equal to zero and determine the contribution in
the equation of motion, caused by the interactions of the
electronic and bosonic degrees of freedom. Now our task
is to determine the equations of motion for the magnon

and doublon GFs and to obtain their approximate solu-
tion. This will let us determine the spectrum of the cor-
responding collective modes. In this paper we study only
the doublon GF.

Let us derive the equation of motion for the doublon
GF (2.21); to this purpose we write the equation of motion
for the mean value of the operator X7?:

0

(XY =

(TXPPe™V) = (T{XP%, Vie™).

(6.5)
We substitute in it the expression (6.4) for X2 and also
the relation

(XI2,V) = o0 X0 o2 X2 4 o2 (X0 - X2),

Then our initial equation could be rewritten in the form:

(K92) () (Tx%eV) = (T (XP - X))
0 H(1) S0 (TW5 (1) (77 W) (15)e ),
where
(1(8\2/)71 (12) = — (ail +U = 2p+ 0 — o] ) 012
(6.6)

Taking into account the definition of the electronic GF we
write its last term in the form

20/ T3 (1£7%) ()]
where
—(TWs(101)¥5(202))

L5101 ,202) = (6.7)

is the anomalous component of the electronic GF.

The mean values ((...)) of X operators are expressed
through the variational derivative of the functional @[V],
and we come to the final form of the equation for the

generating functional:
2 (0P 0P
! svi2 50

+ o' Tr [S (tL"?) (107 ,167)] .

- 0P
K02yt (11) =
( OV) 51)?/2

(6.8)

In the same way it is possible to write the equation for
(TX%e~V)) and reduce it to the form

0P

—1

o (58) ™ () =

i (0 ) £ TR (€ (0] (69)
ovy o

Differentiating now the equation (6.8) with respect to v3°,

and the equation (6.9) with respect to v92, we come to the

pair of conjugate equations for the doublon GF:

0

(]. - n1)512 — OJW

x Tr [ (¢£) (107,167)] .

(K®) ™' (11D (12) =

(6.10)
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0

/
o' —
02
vy

x Tr [S(£2't) (207 ,207)] .

D2(127) (K92) ™' (2'2) = (1 — 11)d1a —
(6.11)

Here we introduced the number of electrons on the site,
ni = ng + ng, where n¢ = (¢l _c1,). We see that the
exact equations for the doublon GF contain terms with
variational derivatives of anomalous electronic GF with
respect to the fields v9? and v2°. To obtain a close equation
for doublon GF we have to calculate these terms by the
same approximate way.

Let us calculate the derivative of off-diagonal (with
respect to the upper spinor indexes) electronic GFs £!2
and £2!. We use the multiplicative representation (3.18).
In the normal state we could use the expression for the
variational derivative.

OL(80) _ 11y I 1L 0)] N
w30 Sv30
H12 ’
X L22(14) + L11(33’)6572(034) (6.12)
vy

We take the inverse propagator GF L~! in the approxi-
mation, when in the general expression (3.20) the term X’
is neglected, and II is taken in the zeroth order approxi-
mation. It is easy to obtain the relations:

8 [Lot (303,40 2
[ OV((S 230 o) = 030530,0230347",
V3
5]]012(30'3,40'4) 52@

_ ;Y
= 70’355 o 534 1T
dv30 ST 502030

Then, within the first order approximation with respect
to t the equation (6.10) is determined by the expression

12 o
B R it
ovs
— G7%(33) {53/41'79 - iTy%(fg‘fS)(3'4)} D02(3’2)}.
(6.13)

After substituting this relation into the equation (6.10),
we represent equation for the doublon GF in the form

[(182) ™ (1) — MP2(ar)] D2 (112) =
(1 —n1)d2 + PP2(12), (6.14)

PO2(12) = Tr [%(tG"/)(12)T“§5/ (21)} , (6.15)
M2 (12) = —Tr [s(tGU’)(u) (walg Y (F 56’)(21))} .
(6.16)

The index [ of the terminal and the self-energy part in-
dicates the “left” form of the equations for D°2. In the

same way starting from the equation (6.11), it is possible
to come to the “right” form of the equation for D2:

—1

D202) [(K§7) ™ (2) - M2 (22)] =

(1 —n1)d12 +P22(12), (6.17)

PO2(12) = Tr [séf’f (21)Tw(g0/t)(12)] : (6.18)
M (12) = Tr [%éff’ (21) (wytu + z‘TyS(tgff’t)(u))} :
(6.19)
To recover the symmetry of the doublon GF let us sym-
metrize the equations (6.14) and (6.17) making their sum.
Then, the doublon GF is equal to

(1 —n)+P%(q)
iwn — (U = 2p) — M%2(q)’

D™ (q) = (6.20)

where
MP(q) = 3 [MP(g) + MP(q)],
P(g) = 3 [P2(0) + P(a)].

The self-energy and the terminal part are equal to

M (q) =
- % s(k){Tr[% G (k)ir¥] — Te[S GO (k — q) wy]}
ko
+ = s(kz){s(k — @) Tr[S G (k)it¥ S G (k — q))
ko

ko
x {ms Go(k) 7" G (k— )|+ TX[S G (k—q) 7° g"(k)]}.
(6.22)

In the same way we can calculate the doublon GF D29. Tt
is possible to represent the result of the computation in
the form

—(1—n)+P?(q)
iwy, + (U = 2p) — M20(q)’

D®(q) = (6.23)

where the values P?(q) and M?°(q) are expressed
through P%2(q) and M%(q):

P2(q) = =P?(~q),
(6.24)
M*(q) = =M"(=q).

Thus we see that the condition of symmetry is fulfilled

D*(q) = D*(~q), (6.25)
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or D?Y = DY? in the coordinate space, which follows di-

rectly from the definition (6.2) for the doublon GF.
After the computation of the trace in the expres-

sions (6.21) and (6.22), we can represent them in the form:

MP(q) = QZ —97(k —q)]
+3 Ze(k) [e(k - k) Gk —
ko af
)7 (- ) 30250 (6:20)
af
P(g) = —5 S (k)
ko

x {[ 7(k) + G ()] (G (—k + @) + G~k + )]

+[GT2(k) + G5 (R)] (611 (—k + q) + G5, (—k + q)]
+ (G (=k+ q) + GTa(—k + q)] (G5, (k) + G5, (k)]

T [CS(—k + q) + Gk + q)] [G7 (k) +%<k>]}.
(6.27)

Now we calculate the expression (6.26) in the mean field
approximation for the electronic GF. Substituting here the
formula (5.3) and summing over frequencies, we write the
result as a sum of two contributions of the first and second
order with respect to t:

M%(q) = MP(q) + M3(q),
where
MP(q) =
- %kZ O e riez ) - 1Bz
(6.28)
02 ) +e(k—q)
M Z‘E 2@"( )
X Z nm 7 - q)
FIES (k)] - f [E7(k — q)]
ey —Ez(R) - Er(k—q) O

where (n,m =1,2)
(AD)11 — (A7) (k)
x { (A% )1+ (AZ)an] (R (A, + A3,)

cy

nm

(k,k—q) =

(A )12+ (A% )as] (k) (45, + Agg)} (6.30)

and here (P2), A° are determined by formulas (5.13)
and (4.5) Remarkable is the fact that expressions M,
and My vanish at wave vector Q = (m,,...). Because
M"2(q) is nothing but the self-energy of a doublon, we see
from equation (6.23), that at half-filling, when U —2u = 0,
a doublon is a soft mode in the vicinity of the point
(m,m,...). This observation pushes to study its dispersion
law and attenuation.

We postpone the study of doublons at arbitrary elec-
tron concentration and fix ourselves on the case n = 1.
We are limited now to the hydrodynamical regime.

7 Dynamical fluctuations
in the hydrodynamical regime

It is well known that collective modes in a disordered
(symmetrical) phase in the hydrodynamical regime are
ruled by the conservation laws [36]. Thus the spin GF D?°
should be determined by the total spin conservation law,
while the pseudospin GF D°? is determined by the pseu-
dospin conservation law [37-40]. The three pseudospin

components
P+—ZeZQRlc 1Ci1 Ze QR ‘il Cit,

. 1
P 2:2( -1) (7.1)
with @ = ( ..) obey permutation relations
[P+ H] = (20— 1)P*,
[P~ H] = —(2u—U)P~, [P*,H]=0, (7.2)

from which it is clear that at half filling (n = 1) all pseu-
dospin components are conserved. This leads to the diffu-
sion form of the pseudospin (doublon) susceptibility, which
is the retarded doublon GF x%?(q,w). According to Kubo-
Mori theory, this susceptibility is expressed through the
memory function M (q,w) by the relation

M (q,w)

M2 Jw)’
w- Mgl
Xq

X" (q,w) = (X?| XN qw = (7.3)

where we introduce a notation for the static susceptibility,
xg: = x"(q,0).

On the other hand the memory function is expressed
through the irreducible retarded GF of pseudospin cur-
rents (see [41]):

dw' Im( ZXO2‘ ZX20>>ZT’I“

M02 —iqR;; /
(g.w Ze W (w—w +1id)
— 00
_ (7.4)
Here X?? means the time derivative of operator X??:
X02 [X02 H]
= (U =2 X2 — o/ (1°W) o (i7" ) (1¥) o (i0”).  (7.5)
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Further to this, we consider the half-filling case, when
U —2p =0. Then

(X @] -ix3 )" =

(7" 0)r (i, 1) () (i, 0| (2T D) (G0 ) (77 30 (55))

~(( W) (16", 1)) (i, O] (0 8) (57 ) @ 77) 1 (G ))
(7.6)

Now we use the approximation of interacting modes, well
known in the relaxation theory, by Mori [42]: the two-
particle electron correlations in expression (7.6) are de-
composed into pair correlators and then expressed through
the imaginary parts of the retarded electron GFs. As a re-
sult we come to the following expression, determining the
memory function:

f2z

x /dw’/dwl [flwr = ') = flwn)]

y tr{[ImG” (q — k, &’ — w1)][Im(IGT" (k,w1)3)]}
W (w —w' +1id) '

M%(q,w ) +e(k—q)]

(7.7)

Here G77 is the transposed matrix G°. The quantity
G (k,w) is the retarded electron GF. It can be obtained
from our Matsubara GF's by analytical continuation from
discrete imaginary frequencies into real ones: iw, — w-+1id.
Expression (7.7) is similar to those obtained in the in-
teracting modes approximation for other dynamical sus-
ceptibilities. For example, the spin susceptibility is:

M27(q,w)
o Mo’agg,w) °
Xq

X7 (g w) = (X77| X7 ) g = — (7.8)

By similar decoupling of the irreducible GF's of the cur-
rents we obtain:

— 42
X /dw’/dwl [f(wr — Flwn)]

) -
tr{ [ImG? (k — q,w1 — )] [Im(SG7 ) (k,w]}
W' (w —w' +1id)

M (q,w ) —e(k—q)]°

(7.9)

It is remarkable that the memory GF for the spin sus-
ceptibility vanishes at ¢ = 0, while for the doublon sus-
ceptibility it vanishes at ¢ = Q. This difference originates
from the total spin conservation law (Fourier component
of the spin density at ¢ = 0), while the component of the
pseudospin density is conserved at ¢ = @ and only for
half-filling. There is another important difference in ex-
pressions (7.7) and (7.9). Arguments of the electron GF's
appear in a different way in these expressions. This reflects
the fact that the spin collective mode is formed through
excitations of a particle and a hole, while the pseudospin

collective mode (doublone) is formed through excitations
of two particles (or two holes).

Consider now the hydrodynamical limit corresponding
to small frequencies w and small wave point g (for expres-
sion (7.7)). In the hydrodynamical limit w < vq, where v
is a characteristic electron velocity on the Fermi surface.
Under these conditions from equations (7.7) and (7.9) the
asymptotic expressions follow:

ImMOQ(q,w) _ _D02 2,

ReM"(q,w) =0, (7.10)

ImM7(q,w) ReM“%(q,w) =0, (7.11)

where the coefficients of spin and pseudospin stiffness are
equal

02 — or Z(U(kz)
k

x tr{Img”’(k, —w1)Im[SG7 (k,w1)S] } (7.12)

D7 = 47rZ(v(k:)e)2/dw1f’(w1)
k

X tr{Img"(k,wl)Im[%g”(kz,wl)%] } (7.13)

_ oo 2
=D ,

&) [ dorf'te)

Here e is the unit wave vector, and f’(w) is the derivative
of the Fermi function.

Expression (7.13) is valid at arbitrary U; in the case
of U > W it is consistent with the result of [41] for the
tJ-model.

Notice that if we use the electron GF in the mean
field approximation (without attenuation of quasiparti-
cles) both expressions (7.12) and (7.13) vanish. It is easy
to show that if the attenuation of quasiparticles v obeys
the condition v > vq, both expressions become finite. In
the general case expressions (7.7) and (7.9) for the memory
function give in the hydrodynamical limit correct asymp-
totic values, therefore the susceptibilities have the diffu-
sion form, which is

Dg?

—_—, 7.14
60 (7.14)

1
. -
- my(q,w) = Xq

where D = D/xq.

8 Conclusions

We have applied the GFA to investigate the Hubbard
model in the X operator representation. This means that
we discussed the case of sufficiently strong electronic cor-
relations U > W. We have derived the exact equation for
the electronic GF in terms of the variational derivatives
with respect to the fluctuating fields v""/, v7%, 120 cou-
pled with the spin and charge densities. The electronic

GFs represent generally an 8 x 8 matrix with respect to
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the three discrete indexes o, «, v. In the matrix represen-
tation the equation has the same structure with the GF
for the Hubbard model in the limit U — oo, for the tJ-
and sd-models and for the GFs of the transverse spin com-
ponents in the Heisenberg model as well.

The electronic GF G has a multiplicative character in
the sense that it is expressed by a product of two quan-
tities, G = GA, where G is the propagator satisfying the
Dyson equation with the self energy X', and A is the termi-
nal part. From the equation for G, a pair of equations with
variational derivatives for X and A follow. Their iteration
generates a power series in the parameter W/U. This cor-
responds to the perturbation theory close to the atomic
limit. The iteration corrections of the first two orders al-
low to formulate a mean field approximation essentially
equivalent to that of COM.

Taking the electronic GF in the mean field approxi-
mation we derived an equation for the doublon GF. The
properties of the poles of the doublon GF depends sub-
stantially on the electronic concentration n. For n < 1
there is a pole which has a real part U — 2u > 0, corre-
sponding to the activated mode with the quadratic dis-
persion law. For n — 1, U — 2u — 0. The investigation
of the special case n = 1 reveals that a soft mode with
Q = (m,7,...) may exist. However at Q = (m,7,...)
the paramagnetic phase of the Hubbard model has an in-
stability to antiferromagnetic ordering. It means that two
possible instabilities — doublon and magnon ones — should
compete, and a final result concurring a type of ordering
at half filling demands a farther investigations. It will be
a subject of next study.

The other direction is to investigate magnetically or-
dered states. We should go out of the scope of the mean
field approximation and take into account the second order
correction Ys, including the interaction of electrons with
magnons. The preliminary analysis reveals that it con-
tains a singular Kondo-like term ~ In|w — EF |, which,
as it has been pointed out in the works [43][44], leads to
a stable ferromagnetism. After the extraction of the rel-
evant term in the second order correction we could write
a more exact equation for the magnon GF and calculate
the spin-wave spectrum. All of this will form the subject
of a next paper.
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Mancini for hospitality during his stay in the Dipartimento
di Fisica “E.R. Caianiello”, Universita degli Studi di Salerno,
where this paper has been started. Yu.A. Izuymov, N.I.
Chaschin and D. S. Alexeev thank the Russian Foundation
of Support of Scientific School, grant NS—747.2003.2.

Appendix A

Equation of motion for an arbitrary Green’s function

Consider an average of an arbitrary T-product of the
operators Ay, Ba, Cs, Dy,... (it could be X operators, spin

operators or other), taken in the Heiseberg representation:

— H —H .
A1:e TAz-le T, 1:{21,7'1},

and so on. Then the following identity is valid:

(A1)

%((TA13203D4 V) = (TA1ByC3Dy...e7V)
+ (T{A1, B2}C3Dy ...e7 V)
+ (T{A1,C3} B2 Dy ... .e_v)) + ...

— (T{A1,V}ByCsDy...e7 V). (A.2)

Here the average over the Gibbs statistical ensemble is
denoted by

(T..e™V) = Tr{e PHT..e7V}. (A.3)

The relation (A.2) represents the result of the differen-
tiation of the initial average with respect to the time 7;
ascribed to the operator A;. In the right hand side of the
relation (A.1) A; represents the time derivative

Ay = —[A1,H]. (A4)

The curl brackets of the kind {A;, B2} mean
{A1, B2} = (11 — 12)[4Ai,, Bi,]+(11), (A.5)
where [...,...]+ is an anticommutator or a commutator de-

pending on the kind of the A and B operators. The signs
of the terms in the second line of equation (A.2) are deter-
mined by the signs of the transpositions of f-operators in
the T-product from their original place to the second one
in the energy term. In the last term of equation (A.2) the
expression { A1, V'} is a commutator because the operator
V is implied to be boson-like. Formally this term and the
first one could be merged and H + V may be considered
in a sense as the Hamiltonian of a system immersed in
fluctuating fields.

The identity (A.2) could be proved by differentiating
the T-product expressed through the 6(r — 7’) functions
and the expansion of the exponent e~" in a series, with
subsequent recollection of all the terms back to the expo-
nent. This identity serves as a basis for the derivation of
the GFs in the fluctuating fields, defined as

((TA1B2 C. e*V))
(Te=V) 7

<TA1B2 ‘e 67V>V = (A6)

where (Te~")) = Z[V] is the generating functional.

Appendix B

Expansion of self-energy and terminal part
of the electronic Green’s function

The normal GF G(12) can be represented in a multiplica-
tive form similar to that of (3.18) for the whole GF,
namely

G(12) = G(11)A(1'2) (B.1)
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where bold indexes mean 1 = {1, o, 01 }. Thus quantities G,
G, A and X' (determined by Dyson equation (4.3)) are
2 X 2 matrices with respect to the spinor index a.

We find the equations for A and X from the general
matrix equations (3.21) and (3.22) by writing down the
equation for the matrix element X’11:

X' (12) =
= [ () A () — (22 (w3) A2 107
. {(LO_‘})H (3'2) — 2’11(3’2)]
= (L) s) AT (1a) - (12)(43) A2 (10|

: [(Lgvl)21 (3'2) — 2’21(3/2)} (B.2)

2/21(12) —
= [ () A% (1) — (122 (w3) A2 (107

@) 2) - 1 )]

- [(leg)(4/3/)1421(14’) - (fLQQ)(4’3’)A22(14/)}
: [(Lgvl)21 (3'2) — 2’21(3@)} . (B.3)

For the normal phase, matrix elements L'? = L2! = 0,
however the derivatives of them with respect to the fields
192 and v?° should not vanish, therefore in equations (B.2)
and (B.3) we must keep such derivatives.

In the first order in £ equations (B.2) and (B.3) lead re-
spectively to an equation for the self-energy of the normal
GF (2! = 5). Matrix operators A'' and A'2 include
the derivatives with respect to fluctuating fields which act
on (Lgy)'t and (Lgy)'2, and therefore we come to the
expression:

X1 (1o20) = X7 (12)
= 01 [(7250)(15,25) + (nyé‘ém(m,m)}

1 -1

bz 0GE)0) - 60| (1 7).
(B.4)

Here in the last line we have used a more concise definition
of G = (G7, and also made use of the expression for the
transposed matrix

G(12) = —G(21). (B.5)

The calculation of second order contribution in the un-
cutable part X} demands much more efforts, but it in-
volves nothing else then standard and straightforward it-
erations of equations (B.2) and (B.3). We present the final
result:

(1) = — Z(tgff/)(lg) B7%' (21) B3 (21)
: o — B (21) —B3% (21) ’
(B.6)

where
BY7 (21) = (GF,)(21)GYy (12) — G3,(21)(G5,) (12)

B37 (21) = (1G35)(21) G35 (12) — G (21)(GT11)(12)
(B.7)
In a similar way we calculate the terminal part A of
the electronic GF. Firstly we write down the expression
for a matrix element I7'' = A from equation (3.29). This
element is coupled with the off-diagonal element IT?!. We
have the following pair of coupled equations

A(12) = (AN ®)(12)
+ [(lel)(4/3/)All(14f) - (fLQl)(4/3’)412(14’)} A(s'2)

n [(EL”)(4’3’)A”(14/) - (§L22)(4/3/)A12(14/)} 1%\ (52),
(B.8)

1% (12) = (A?'®)(12)
n [(lel)(4f3f)A21(14f) - (~L21)(4'3’)A22(14’)] A(s'2)
+ {(leQ)(4’3’)12121(14/) - (5L22)(4/3/)422(14/)} 7% (3'2).
(B.9)

From here we find the zeroth order expressions for IT'!
and 72!

AQ(10'1,20'2) = (512 (dl(alag)é), (BlO)
0d
Hgl(101,20'2) = _5120.1(2'7.1/)_20. (B.ll)
1
Substituting these expressions in equations (B.8)

and (B.9) leads to the first order correction for the ter-
minal part:

Ai(10,20) = (T%tGT7)(10,20){Tngng).
+ (r71GT7) (1525 (T X7 X 77
+ (iTYiGitY) (17,25 (T X2 X20),  (B.12)

which includes bosonic GFs defini-
tions (2.19)—(2.21).

Fourier transformations of expressions (B.4), (B.6),
(B.10) and (B.12) give the final results for the self-energy
and the terminal part of the electronic GF. They are given

by formulas (4.10), (4.12), (4.5) and (4.7), respectively.

determined by

References

. J. Hubbard, Proc. Roy. A. 276, 238 (1963)

. J. Hubbard, Proc. Roy. A. 281, 401 (1963)

. J. Hubbard, Proc. Roy. A. 285, 542 (1965)

L. Roth, Phys. Rev. 184, 451 (1969); L. Roth, Phys. Rev.
186, 428 (1969)

W N



86

10.
11.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.
23.

24.

25.

The European Physical Journal B

E.G. Goryachev, E.V. Kuzmin, S.G. Ovchinnikov, J.
Phys. C 15, 1481 (1982)

N.M. Plakida, V.Yu. Yushankhai, I.V. Stasyuk, Physica C
160, 80 (1089)

F. Mancini, S. Marra, H. Matsumoto, Physica C 244, 49
(1995)

A. Avella, F. Mancini, D. Villani, L. Siurakshina, V.Yu.
Yushankhai, Int. J. Mod. Phys. 12, 81 (1998)

A. Avella, F. Mancini, R. Miinzner, Phys. Rev. B, 63,
245117 (2001)

F. Mancini, A. Avella, Eur. Phys. J. B 36, 37 (2003)

S. Ishihara, H. Matsumoto, S. Odashima, M. Tachiki, F.
Mancini, Phys. Rev. B 49, 1350 (1994); H. Matsumoto, T.
Saikawa, F. Mancini, Phys. Rev. B 545, 14445 (1996); D.
Villani, E. Lange, A. Avella, G. Kotliar, Phys. Rev. Lett.
85, 804 (2000); V. Fiorentino, F. Mancini, E. Zasinas, A.
Barabanov; Phys. Rev. B 64, 214515 (2001); F. Mancini,
N. Perkins, N. Plakida, Phys. Lett. A 284, 286 (2001); A.
Avella, F. Mancini, D. Villani, H. Matsumoto, Eur. Phys.
J. B 20, 303 (2001); M. Bak, F. Mancini, Physica B 312,
732 (2002); A. Avella, F. Mancini, R. Hayn, Eur. Phys. J.
B 37, 465 (2004)

W. Nolting, W. Borguel, Phys. Rev. B 39, 6962 (1989)
T. Hermann, W. Nolting, J. Magn. Mater. 170, 253 (1997)
M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963)

S.E. Barnes J. Phys. F 6, 1375 (1976); S.E. Barnes J. Phys.
F 7, 2673 (1977)

G. Kotliar, A.E. Ruckenstein, Phys. Rev. Lett. 57, 1362
(1986)

L. Lilly, A. Muramatsu, W. Hanke, Phys. Rev. Lett. 65,
1379 (1990)

R. Fresard, M. Dzierzawa, P. Wolfle Europhys. Lett. 65,
1379 (1990)

W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)
A. Georges, G. Kotliar, Phys. Rev. B 45, 6479 (1992)

A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev.
Mod. Phys. 68, 13 (1996)

G. Baym, L.P. Kadanoff, Phys. Rev. 124, 287 (1961)
L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics
(Benjamin, New York, 1962)

A.E. Ruckenstein, S. Schmitt-Rink, Phys. Rev. B 38, 7188
(1988)

M.L. Kulic, R. Zeyher, Phys. Rev. B 49, 4395 (1994)

26.
27.

28.
29.

30.

31.

32.

33.

34.

35.
36.

37.
38.
39.
40.
41.

42.

43.

44.

R. Zeyher, M.L. Kulic, Phys. Rev. B 51, 1234 (1995)
Yu.A. Izyumov, N.I. Chaschin, The Physics of Metals
and Metallography 92, 451 (2001); Yu.A. Izyumov, N.I.
Chaschin, The Physics of Metals and Metallography 92,
531 (2001); Yu.A. Izyumov, N.I. Chaschin, The Physics of
Metals and Metallography 93, 18 (2002); Yu.A. Izyumov,
N.I. Chaschin, The Physics of Metals and Metallography
94, 527 (2002); Yu.A. Izyumov, N.I. Chaschin, The Physics
of Metals and Metallography 94, 539 (2002)

N.M. Plakida, Physica C 282—287, 1737 (1997)

N.M. Plakida, L. Anton, S. Adam, Gh. Adam, JETP 97,
331 (2003)

A. Avella, S. Krivenko, F. Mancini, N.M. Plakida, J. Magn.
Magn. Mater. 272, 456 (2004)

A. Avella, F. Mancini, V. Turkowski; Phys. Rev. B 67,
115123 (2003)

Yu.A. Izyumov, N.I. Chaschin, V.Yu. Yushankhai, Phys.
Rev. B 65, 214425 (2002)

Yu.A. Izyumov, Yu.N. Skryabin, Basic Models in Quantum
Theory of Magnetism (Ural Division of the Russian
Academy of Sciences, Ekaterinburg, 2002) (in Russian)
Yu.A. Izyumov, in Lectures on the Physics of Highly
Correlated Electron Systems VII, Seventh Training Course
in the Physics of Correlated Electron Systems and High-
T. Superconductors, edited by A. Avella, F. Mancini
(AIP Conference Proceedings, 2003), p. 678

A. Harris, R. Lange, Phys. Rev. 157, 295 (1967)

D. Forster  Hydrodynamical Fluctuations,  Broken
Symmetry and Correlation Functions (New York,
Benjamin, 1975)

C.N. Yang, Phys. Rev. Lett. 63, 2144 (1989)

S.Q. Shen, X.C. Xie, Condens. Matter. 8, 4805 (1996)

H. Bruks, J.C.A. d’Auriac, Phys. Rev. B 55, 9142 (1997)
A. Avella, F. Mancini, D. Villani; cond-mat/9807402

G. Jakely, N.M. Plakida, Theor. Mat. Phys. (Russian) 114,
3, 426 (1998)

H. Mori, Progr. Theor. Phys. 33, 423 (1965); H. Mori,
Progr. Theor. Phys. 34, 426 (1965)

J.A. Hertz, D.M. Edwards, J. Phys. F. 3, 2174 (1973);
D.M. Edwards, J.A. Hertz, J. Phys. F. 3, 2191 (1973)
A.V. Zarubin, V.Yu. Irkhin, Fiz. Tverd. Tela. 41, 1057
(1999) (Phys. Solid State 41, 963 (1999))



